Enhanced chemotherapy of cancer using pH-sensitive mesoporous silica nanoparticles to antagonize P-glycoprotein-mediated drug resistance.
نویسندگان
چکیده
Multidrug resistance (MDR) is the major clinical obstacle in the management of cancer by chemotherapy. Overexpression of ATP-dependent efflux transporter P-glycoprotein (PGP) is a key factor contributing to multidrug resistance of cancer cells. The purpose of the present study was to use the endosomal pH-sensitive MSN (mesoporous silica nanoparticles; MSN-Hydrazone-Dox) for controlled release of doxorubicin (Dox) in an attempt to overcome the PGP-mediated MDR. In vitro cell culture studies indicate that uptake of MSN-Hydrazone-Dox by the human uterine sarcoma MES-SA/Dox-resistant tumor (MES-SA/Dx-5) cell occurs through endocytosis, thus bypassing the efflux pump resistance. This improves the efficacy of the drug and leads to significant cytotoxicity and DNA fragmentation evidenced by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling and DNA laddering assays. In vivo studies show that the intratumor injection of MSN-Hydrazone-Dox induces significant apoptosis of MES-SA/Dox-resistant cancer cells. This is validated by active caspase-3 immunohistochemical analysis. However, MSN-Hydrazone, without doxorubicin conjugation, cannot induce apoptosis in vitro and in vivo. In conclusion, both in vitro and in vivo studies show that MSN could serve as an efficient nanocarrier entering cell avidly via endocytosis, thus bypassing the PGP efflux pump to compromise the PGP-mediated MDR. MSN-Hydrazone-Dox could further respond to endosomal acidic pH to release doxorubicin in a sustained manner. Besides the cell study, this is the first report that successfully shows the therapeutic efficacy of using MSN against MDR cancer in vivo.
منابع مشابه
The effect of mesoporous silica nanoparticles loaded with epirubicin on drug-resistant cancer cells
Objective (s): In chemotherapy for cancer treatment, the cell resistance to multiple anticancer drugs is the major clinical problem. In the present study, mesoporous silica nanoparticles (MSNs) were used as a carrier for epirubicin (EPI) in order to improve the cytotoxic efficacy of this drug against the P-glycoprotein (P-gp) overexpressing cell line. Materials and Methods: MSNs with phosphonat...
متن کاملTherapeutic Discovery Enhanced Chemotherapy of Cancer Using pH-Sensitive Mesoporous Silica Nanoparticles to Antagonize P-Glycoprotein–Mediated Drug Resistance
Multidrug resistance (MDR) is the major clinical obstacle in the management of cancer by chemotherapy. Overexpression of ATP-dependent efflux transporter P-glycoprotein (PGP) is a key factor contributing to multidrug resistance of cancer cells. The purpose of the present study was to use the endosomal pH-sensitive MSN (mesoporous silica nanoparticles; MSN-Hydrazone-Dox) for controlled release o...
متن کاملApplication of mesoporous silica nanoparticles for drug delivery to cancer cells
Cancer is one of the main causes of death worldwide. Chemotherapy is the most common method for cancer therapy which represent non-specific side effects on normal cells and tissues and drug resistance in cancer cells. There are two main mechanisms for Multi Drug Resistance (MDR) in cancer cells including: drug efflux pump and activation of anti-apoptotic pathways. Cancer chemotherapy disadvanta...
متن کاملPolyaspartic acid-anchored mesoporous silica nanoparticles for pH-responsive doxorubicin release
Background Nanotechnology-based drug delivery systems exhibit promising therapeutic efficacy in cancer chemotherapy. However, ideal nano drug carriers are supposed to be sufficiently internalized into cancer cells and then release therapeutic cargoes in response to certain intracellular stimuli, which has never been an easy task to achieve. Objective This study is to design mesoporous silica ...
متن کاملHollow Mesoporous Silica Nanoparticles (HMSNs) Synthesis and in vitro Evaluation of Cisplatin Delivery
Cisplatin continues to be a first line chemotherapy agent alone or in combination with other cytotoxic agents orradiotherapy. Dose-limiting side effects, intrinsic and acquired resistance are the main reasons for inventing and developing new ways of delivering cisplatin. Biocompatible hollow porous materials offer high void volume, shell porosity, low density and controllable size which make th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular cancer therapeutics
دوره 10 5 شماره
صفحات -
تاریخ انتشار 2011